Conductive Polymer Hybrid Aluminum Electrolytic Capacitors
Cautions for Using Aluminum Electrolytic Capacitors With Conductive Polymer Solid Electrolyte

Please be sure to read this specification before using this product. Before placing an order, please inquire about the Product Specification to check details.

Cautions for Usage

1. **Conductive Polymer Hybrid Aluminum Electrolytic Capacitors, Solid Conductive Polymer Aluminum Electrolytic Capacitors are polarized.**
 - Using a capacitor with reversed polarity causes abnormal current flow, resulting in a short circuit.
 - Cannot use for the circuit to which the polarity reverses by ripple voltage.

2. **Prohibited Circuits**
 - Since leakage current problem may arise, capacitors cannot be used in the following circuits.
 1. Coupling circuits
 2. Circuits greatly affected by leakage current

3. **Use capacitors within the rated voltage.**
 - The application of voltages exceeding the rated voltage can significantly increase leakage current, resulting in a short failure. Please do not apply a voltage exceeding the rated voltage.

4. **Be careful of excessive rush current.**
 - Using capacitors in the circuit where excessive rush current passes may cause characteristic deterioration or a short. When the rush current exceeds 10 A, we recommend use of protection circuits to ensure high reliability.

5. **Use the allowable ripple voltage and the rated ripple current below the specified values.**
 - When superimposing a ripple voltage on a DC bias voltage, exercise care that the peak voltage value does not exceed the rated voltage and does not reverse the polarity.
 - The rated ripple current shall be below the specified value.

6. **Changes in characteristics due to operating temperature**
 - The characteristics of conductive polymer hybrid aluminum electrolytic capacitors, solid conductive polymer aluminum electrolytic capacitors vary by temperature as follows. These variations are temporary and recover when the temperature goes back (except for the case of characteristic deterioration because of high temperatures over a long time). Note that using capacitors over the upper category temperature increases leakage current, resulting in a short and destruction.
 - Be careful of the capacitor temperature considering not only the ambient temperature where the equipment is placed and the temperature inside the equipment but also radiation heat from the heating element inside the equipment, and self-heat generation by ripple current.

 1. Capacitance expressed in the value at 20°C, 120 Hz increases with increased temperature and decreases with decreasing temperature.
 2. Tangent of loss angle (tanδ) expressed in the value at 20°C, 120 Hz is temperature-independent.
 3. Equivalent series resistance (ESR) expressed in the value at 20°C, 100 kHz is temperature independent.
 4. Leakage current increases with increased temperature and decreases with decreasing temperature.

7. **Changes in characteristics due to frequency**
 - The characteristics of conductive polymer hybrid aluminum electrolytic capacitors, solid conductive polymer aluminum electrolytic capacitors vary by operating frequency as follows.

 1. Capacitance expressed in the value at 20°C, 120 Hz decreases with increased frequency.
 2. Tangent of loss angle (tanδ) expressed in the value at 20°C, 120 Hz increases with increased frequency.
 3. Equivalent series resistance (ESR) expressed in the value at 20°C, 100 kHz increases with decreasing frequency.

8. **Failure modes of solid conductive polymer aluminum electrolytic capacitors**
 - The failure modes of solid conductive polymer aluminum electrolytic capacitors are a wear-out failure by deterioration of electrical performance and a random failure by a short. The failure rate level is 0.5%/1,000h at the reliability level of 60% with the specified voltage applied at 105°C.
 - If a short occurs and continues with the application of a voltage exceeding the rated voltage, increasing the internal temperature, the internal pressure increases by vaporization of the cathode material, which may cause the aluminum case to come off.

9. **Operating environments**
 - Do not use capacitors in an environment directly exposed to water, saltwater spray, oil spill or condensation.
 - Do not use capacitors in an environment filled with toxic gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonia, etc.
 - Do not use capacitors in a place exposed to ozone, ultraviolet rays, or radiation.

10. **Fumigation Process**
Before transportation of electronic equipment to overseas, fumigation process may be subjected to wooden packing material with a halogen (compound) gas such as methyl bromide. Exercise care that this halogen gas may corrode capacitors. Also, be careful of epidemic preventive agent as corrosive component such as halogen may be contained.

11. The case of Conductive Polymer Hybrid Aluminum Electrolytic Capacitors, Solid Conductive Polymer Aluminum Electrolytic Capacitors and the cathode terminal are not insulated.
 - The case and the cathode terminal are not insulated as being connected through inconstant resistance.

12. Double-sided PCB’s
 - When using capacitors on a double-sided PCB, exercise care that the wiring pattern does not touch the area where the capacitors are mounted. Failure to do so may cause a short to occur to the PCB depending on the mounting conditions.

13. Regarding Connection of Conductive Polymer Hybrid Aluminum Electrolytic Capacitors, Solid Conductive Polymer Aluminum Electrolytic Capacitors
 - When connecting more than one capacitor in parallel, consider the current balance.

14. Use at a high altitude
 - The use of capacitors at high altitudes such as on an airplane causes a large difference between the internal pressure of the capacitors and the atmospheric pressure. However, there is no problem in use under atmospheric pressure up to about an altitude of 10,000 meters.
 If the condition is severe like space, please contact us.

15. Other Notes
 - Do not use capacitors on a circuit where rapid charge and discharge are repeated.
 - Electrical characteristics of capacitors vary by variations in temperature and frequency. Please consider these variations when designing a circuit.

Cautions for Mounting

1. Cautions for Mounting
 - Do not reuse capacitors that have been assembled in a set and energized. Capacitors cannot be reused except for those which have been measured on electrical performance during periodic inspection.
 - Before mounting, confirm the capacitor ratings (rated capacitance and rated voltage).
 - Capacitors may generate transient recovery voltage. In this case, discharge through a resistor of about 1 kΩ.

 - Before mounting, confirm the polarity of capacitor.
 - Do not drop capacitors onto a floor nor use them.
 - Do not mount deformed capacitors.
 - Do not mount heating parts around capacitors and on the back of the PCB under or back of capacitors.

2. Do not apply excessive pressure to the capacitor or its terminals
 - Be careful of the shock force that can be produced by absorbers, product checkers, and centering on automatic inserters and installers.

3. Soldering
 - Do not solder capacitor body by dipping into melted solder.
 - Soldering conditions (preheating, soldering temperature, terminal dipping time) should be within the ranges specified in the catalog or the delivery specification. Please refer to page 15.
 - Flux should not adhere to the parts other than the terminals.
 - When using a soldering iron, avoid excessive stress to capacitor body.
 - Although leakage current may increase (from a few µA to hundreds of µA) after soldering, it can be reduced through self-repair by applying voltage. It is advised to operate the set properly after treating with the recommended voltage.
 - In case of a long-term use of equipment, control the soldering characteristics so that capacitors and PCB do not fail to connect to avoid abnormal current passage by a failure of soldering to mount.

4. Handling after Soldering
 - Do not tilt, fall, raise or twist capacitor body.
 - Do not pick up or move PCB by holding a capacitor.
 - Do not bump capacitors against objects. When stacking PCB’s, make sure that capacitors do not touch the PCB’s or other components.
 - Do not subject capacitors to excessive stress.

5. Cleaning after Soldering
 - Recommended cleaning method
 ①Cleaning solutions:
 (a) CLEANTHROUGH 710M, 750H, 750L
 (b) PINEALPHA ST-100S
 (c) Techno Care FRW-4~17
 (d) Isopropyl alcohol (2-propanol)
 ②Cleaning conditions:
 (a) The temperature of cleaning solution shall be less than 60°C.
 (b) Use immersion or ultrasonic waves within two minutes.
6. Fixing adhesives and coating materials.

- Do not use halogenated fixatives and coatings.
- Before using a fixative or coating, remove flux residues and contaminants from between the PCB and the sealing section of capacitors.
- Dry the cleaning solution before using the adhesive or coating.
- Do not cover up all the sealing sections (terminal side) of capacitors with the adhesive or coating.
- Heat curing conditions of fixative and coating.
- Do not use any fixatives and coatings.
- Do not store capacitors in an environment directly exposed to ozone, ultraviolet rays, or radiation.
- Do not store capacitors in a place exposed to ozone, ultraviolet rays, or radiation.

- During cleaning, control the cleaning solution against contamination.
- Entrust to specialists of industrial waste treatment for incineration.
- During cleaning, control the cleaning solution against contamination.

5. Storage Conditions.

- Do not store at high temperature and high humidity.
- Store capacitors at temperatures between 5°C and 35°C and relative humidity of less than 75%.
- Store capacitors in airtight containers.
- During delivery, capacitors are stored in airtight moistureproof bags to ensure satisfactory soldering.
- Store capacitors in airtight moistureproof bags to ensure satisfactory soldering.
- Do not lick the electrolyte of capacitors. When the electrolyte gets on your skin, wash it off with soap immediately.

6. Periodic inspection should be performed on the capacitors for the industrial equipment application.

- Failure to do so may cause electric shock or burns.
- Before use, allow capacitors to discharge through a 1kΩ resistor (with a sufficient margin to the heat generation capacity) as needed.
- Solid conductive polymer aluminum electrolytic capacitors may have increased leakage current when unused or stored for a long time after mounted on equipment. This phenomenon often occurs at high ambient temperatures; however, leakage current will decrease through voltage treatment. If leakage current still increases after a lapse of more than one year at ambient temperature (shorter time at high temperatures), treat with voltage as needed.

7. Others

- Before using capacitors, check the details of this delivery specification and catalog as well as the following.
- Do not store capacitors in an environment directly exposed to water, saltwater spray, oil spill or condensation.
- Do not store capacitors in an environment filled with toxic gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonia, etc.
- Do not store capacitors in a place exposed to ozone, ultraviolet rays, or radiation.

- Entrust to specialists of industrial waste treatment for incineration.
- Do not store capacitors in an environment directly exposed to water, saltwater spray, oil spill or condensation.

- Do not store capacitors in an environment filled with toxic gas such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonia, etc.
- Do not store capacitors in a place exposed to ozone, ultraviolet rays, or radiation.